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1. INTRODUCTION

Interest in periodically forced pendulums which can display chaotic motions has
been quite widespread. Many researchers have been actively investigating the
complex responses of the system experimentally. Beckert et al. [1] studied a forced
non-linear torsion pendulum by measuring a bifurcation diagram which showed
period doubling and chaos. Blackburn et al. [2] reported experimental
observations of chaos in a driven, damped pendulum in which steady and
alternating torques were applied. Driven pendulums with chaotic motions were
also found by Heng et al. [3], Korte et al. [4], and others [5, 6]. Although the
experiments mentioned above yield important information about the complex
dynamics of periodically driven pendulums, the pendulums in these studies were
limited to only one degree of freedom. Due to the lack of a predictive rule for the
chaotic responses of the periodically driven pendulum, the conditions of the chaotic
motion in the pendulum with higher degrees of freedom are still unclear. For this
reason, a harmonically forced triple pendulum with three degrees of freedom was
constructed. The purpose was to study the driven pendulum experimentally, since it
is a typical non-linear physical system that may exhibit a wide range of interesting
dynamic motions. Meanwhile, it was also hoped to provide experimental evidence
for the existence of chaos in such a system.

2. CHAOTIC VIBRATION OF THE PENDULUM

Figure 1 shows the driven triple pendulum system used in this study. The
pendulum consists of three rigid poles with lengths of ¸

1
, ¸

2
, and ¸

3
. Masses

m
1

and m
2

are attached to joint B and joint C, respectively, whereas mass m
3

is
attached to the end of the lowest pole. The pendulum can only move within the x}y
plane. The displacement of joint A is restricted to the horizontal direction with the
forced harmonic motion x

a
"A sinut. With the masses of the three rigid poles

being ignored. If a, b, and c are de"ned as the angular displacements of the three
poles measured counter-clockwise from a vertical reference line, respectively, then
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Figure 1. Schematic diagram of the horizontal forced triple pendulum and experimental apparatus.
A/D and D/A: Contec AD16-16(PC)EH. Motor Driver: Japan E.M, IPS-1002C. A: Potentiometer,
Midori Precisions, CPP-35B, B, C: Potentiometer, Copal Electronics, JC30S. D: Potentiometer,
Midori Precisions CPP-35B.
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the Euler}Lagrange equations of motion give
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where
a"a(t), b"b (t), c"c(t)

and
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The parameters c
1
, c

2
, and c

3
are damping coe$cients of joints A, B, and C,

respectively, and f is the forcing frequency in Hertz. The dot stands for time
derivation. Equations (1)}(3) are non-linear and can only be integrated numerically.

As shown in Figure 1, the upper end of the pendulum is "xed to the rotator of
a potentiometer, which is attached to the carriage. The potentiometer thus forms
the joint A and the angular displacement a can be obtained directly by measuring
the output voltage of the potentiometer. The carriage is driven by a DC motor via
a belt and can move along a horizontal guide, which applies a forced motion to the
upper end of the pendulum. The displacement of the carriage is measured by
a potentiometer which is connected to the shaft of the support wheel of the belt. To
ensure that the motion of the carriage is exactly x

a
"A sin ut, a personal computer

with Intel 300 MHz Pentium II Processor is used, which is equipped with an A/D
and D/A converter to give a 16-bit accuracy for input and output. The motion of
the carriage is controlled by the computer with PID feedback control technique.
Speci"cally, the amplitude is controlled by means of a motor driver, while the
frequency is controlled by using RDTSC instruction of the CPU. By employing this
controlling method, the carriage can have satisfactory harmonic movement with
the maximum amplitude of 0)360 m. Two more potentiometers, one connecting the
pole ¸

1
and the pole ¸

2
, the other connecting the pole ¸

2
and the pole ¸

3
, form the

joints B and C respectively. The angular displacements a, b and c can thus be
obtained with the output voltages of the potentiometers in joints A, B, and C. In
this design, the independent linearity of each of the potentiometers is $0)5%.
Since the diameter of the conducting wires for power supply to each potentiometer
and for the voltage output from it is only 0)002 m, the e!ect of the conducting wires
on the pendulum system can be ignored.

Experiments were carried out with various combinations of poles and masses.
One of the sets of parameters for observing chaotic motion are ¸

1
"¸

2
"0)150 m,

¸
3
"0)200 m, m

1
"m

2
"m

3
"0)050 kg. The three poles of the pendulum are

made of aluminium alloy. The diameter of each pole is 0)003 m. The poles ¸
1

and
¸
2

weigh 0)003 kg each, while the pole ¸
3

weighs 0)004 kg. The masses m
1

and
m

2
are the sum of the masses of the potentiometers, connectors that "x the

potentiometers to the poles, and an additional mass for adjusting the total mass.
The amplitude of the forcing displacement of the carriage was kept at A"0)062 m,
a typical value in our experiments. The detection for chaotic response of the
pendulum was started with an initial forcing frequency of f"0)01 Hz, and was
repeated by increasing the forcing frequency with an increment of 0)01 Hz. Each
new detection was started after the pendulum returned to the static state. It was
observed that, if the forcing frequency was relatively low, the responses of the
pendulum were periodic, with the three poles of the pendulum oscillating back and
forth symmetrically to the vertical reference line. As the forcing frequency was
increased to 1)667 Hz, the motion of the three poles of the pendulum became
random-like simultaneously and the displacements a, b and c were within $n. The
time histories, phase-plane trajectories and power spectra related to a, b, and c are
shown in Figures 2}4. The phase-plane trajectories in Figures 2(b), 3(b), and 4(b)
were plotted with the data sampled in 30 s and the power spectra in Figures 2(c),
3(c) and 4(c) were calculated from the data sampled in 6 min with a sampling



Figure 2. Chaotic response in experiment shown by a(t) (¸
1
"¸

2
"0)150 m, ¸

3
"0)200m,

m
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2
"m

3
"0)050 kg, A"0)062m, and f"1)667 Hz): (a) time history of a(t), (b) phase-plane

motion, (c) power spectrum of the time series of a(t).
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Figure 3. Chaotic response in experiment shown by b(t) (¸
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"0)050 kg, A"0)062m, and f"1)667 Hz): (a) time history of b(t), (b) phase-plane

motion, (c) power spectrum of the time series of b(t).
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Figure 4. Chaotic response in experiment shown by c(t) (¸
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"0)050 kg, A"0)062m, and f"1)667 Hz): (a) time history of c(t), (b) phase-plane

motion, (c) power spectrum of the time series of c(t).
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Figure 5. Time histories of chaotic responses of the pendulum in numerical simulation with
parameters ¸
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3
"5)9963]10~4 Nms/rad. (a) time history

of a(t), (b) time history of b(t), (c) time history of c(t).

236 LETTERS TO THE EDITOR



LETTERS TO THE EDITOR 237
frequency of 50 Hz. Because there was no single criterion that could be used to
determine whether the time history from the experiment was chaotic [7], the
correlation dimension D

2
and the dominant Lyapunov exponent of the measured

time history were investigated. Since the frequencies of the pendulum responses
were relatively low, the noise in the measured signals could be ignored. The
Grassberger}Procaccia algorithm [8, 9] was used to estimate D

2
and Wolf 's

algorithm [10] was used to calculate the dominant Lyapunov exponent. The
displacements of a, b, and c were sampled with a sampling period of 0)02 s and each
data was 18 000 samples long. To create time-embedded vectors in the
computation, the time delay value was determined by the use of average mutual
information [11]. The computation gave the values of D

2
for D

2a"2)85,
D

2b"2)68, and D
2c"2)77. On the other hand, the dominant Lyapunov exponents

calculated were ja"3)85, jb"3)64 and jc"3)49 in the unit of bits/s. These results
indicated that the motions of the three links of the triple pendulum shown in
Figures 2(a), 3(a), and 4(a) were chaotic.

The numerical simulation was also carried out to con"rm the existence of chaos
in the system. Before the computation, the damping coe$cients of c

1
, c

2
, and

c
3

should be known. However, accurate determination of the actual damping
characteristics to be used in the numerical simulations is very di$cult, because of
the di$culty in describing a physical system with a mathematical model. Because
the main source for damping in the triple pendulum was dissipation in the bearings
of the potentiometers, it was determined that linear viscous damping could be used
to approximate the actual one. To measure the damping coe$cients of the
potentiometers, each of the potentiometers was used to construct
a one-degree-of-freedom pendulum with a pole and a mass. The damping
coe$cient of each potentiometers was then measured and the values of
c
1
"1)1996]10~3 Nm s/rad and c

2
"c

3
"5)9963]10~4 Nms/rad were

obtained approximately. The experimental parameters (¸
1
"¸

2
"0)150 m,

¸
3
"0)200 m, m

1
"m

2
"m

3
"0)050 kg, A"0)062 m, and f"1)667 Hz) were

taken into equations (1), (2), and (3) for the numerical simulation. The motion
equations of the pendulum were integrated using a variable time step, fourth order
Runge}Kutta routine [12], with relative error of 10~8, absolute error of 10~10 and
time interval of 1)5]10~3 s. Because numerical integration can give spurious
results with regard to the existence of chaos due to insu$ciently small time steps
[13], the step size was veri"ed to ensure no such results were generated as a result of
time discretization. The results of numerical simulation are shown in Figure 5.
Although the time histories of a, b and c in this plot are not the same as the ones in
Figures 2(a), 3(a), and 4(a), they nonetheless suggest chaotic responses.

3. CONCLUSIONS

The experiments reported here show that a harmonically driven triple pendulum
can exhibit chaotic motions even when the forcing inputs are highly deterministic.
To our knowledge, this is the "rst time that chaotic motion has been observed
experimentally in this particular type of driven pendulum.
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